આપેલ માહિતી $6,10,7,13, a, 12, b, 12$ નો  મધ્યક અને વિચરણ  અનુક્રમે $9$ અને $\frac{37}{4}$ હોય તો  $(a-b)^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $24$

  • C

    $16$

  • D

    $32$

Similar Questions

જો સંખ્યા $-1, 0, 1, k$ નો પ્રમાણિત વિચલન $\sqrt 5$ હોય તો $k$ = ............... ( જ્યાં $k > 0,$)

  • [JEE MAIN 2019]

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

${x_i}$ $92$ $93$ $97$ $98$ $102$ $104$ $109$
${f_i}$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

વિધાન $- 1 : $ પ્રથમ $n$  યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.

વિધાન $ - 2$  : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.

આપેલ આવૃતિ વિતરણ :

ચલ $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
આવૃતિ $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે 

  • [JEE MAIN 2020]

જો પાંચ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ હોય તથા પ્રથમ ચાર અવલોકનોનું મધ્યક $\frac{7}{2}$ હોય, તો પ્રથમ ચાર અવલોકનોનું વિચરણ......................થાય.

  • [JEE MAIN 2024]