- Home
- Standard 11
- Mathematics
यदि आंकड़ों $6,10,7,13, a , 12, b , 12$ का माध्य तथा प्रसरण क्रमशः $9$ तथा $\frac{37}{4}$ हैं, तो $(a-b)^{2}$ बराबर है
$12$
$24$
$16$
$32$
Solution
$\text { Mean }=\frac{6+10+7+13+a+12+b+12}{8}=9$
$60+a+b=72$
$a+b=12$
$\text { veriance }=\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)=\frac{37}{4}$
$\sum x_{i}^{2}=6^{2}+10^{2}+7^{2}+13^{2}+a^{2}+b^{2}+12^{2}+12^{2}$
$=a^{2}+b^{2}+642$
$\frac{a^{2}+b^{2}+642}{8}-(9)^{2}=\frac{37}{4}$
$\frac{a^{2}+b^{2}}{8}+\frac{321}{4}-81=\frac{37}{4}$
$\frac{a^{2}+b^{2}}{8}=81+\frac{37}{4}-\frac{321}{4}$
$\frac{a^{2}+b^{2}}{8}=81-71$
$\therefore a^{2}+b^{2}=80$
From $(1)$ $a^{2}+b^{2}+2 a b=144$
$80+2 a b=144 \therefore 2 a b=64$
$(a-b)^{2}=a^{2}+b^{2}-2 a b=80-64=16$
Similar Questions
यदि बारंबारता बंटन
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.
निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |