If the normal at one end of the latus rectum of an ellipse  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :

  • A

    $e^4 -e^2 + 1 = 0$

  • B

    $e^2 -e -1 = 0$

  • C

    $e^2 + e + 1 = 0$

  • D

    $e^4 + e^2 -1 = 0$

Similar Questions

An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is

  • [KVPY 2017]

The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are

Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.

Let $P$ be a variable point on the ellipse $x^2 + 3y^2 = 3$ , then the maximum perpendicular distance of $P$ from the line $x -y = 10$ is

The distance of the point $'\theta '$on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ from a focus is