Find the equation of the ellipse, with major axis along the $x-$ axis and passing through the points $(4,\,3)$ and $(-1,\,4)$
Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .$
since the points $(4,\,3)$ and $(-1,\,4)$ lie on the ellipse, we have
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$ ............ $(1)$
and $\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$ ......... $(2)$
Solving equations $(1)$ and $(2),$ we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$
Hence the required equation is
$\frac{x^{2}}{\left(\frac{247}{7}\right)}$ $+\frac{y^{2}}{\frac{247}{15}}=1,$ i.e., $7 x^{2}+15 y^{2}=247$
Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,\,0),$ major axis on the $y-$ axis and passes through the points $(3,\,2)$ and $(1,\,6)$
The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is
The equation of the ellipse whose centre is at origin and which passes through the points $(-3, 1)$ and $(2, -2)$ is
An ellipse is described by using an endless string which is passed over two pins. If the axes are $6\ cm$ and $4\ cm$, the necessary length of the string and the distance between the pins respectively in $cm$, are
Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to