If the number of five digit numbers with distinct digits and $2$ at the $10^{\text {th }}$ place is $336 \mathrm{k}$, then $\mathrm{k}$ is equal to
$8$
$6$
$4$
$2$
Let $A_1,A_2,........A_{11}$ are players in a team with their T-shirts numbered $1,2,.....11$. Hundred gold coins were won by the team in the final match of the series. These coins is to be distributed among the players such that each player gets atleast one coin more than the number on his T-shirt but captain and vice captain get atleast $5$ and $3$ coins respectively more than the number on their respective T-shirts, then in how many different ways these coins can be distributed ?
A committee of $4$ persons is to be formed from $2$ ladies, $2$ old men and $4$ young men such that it includes at least $1$ lady, at least $1$ old man and at most $2$ young men. Then the total number of ways in which this committee can be formed is
There are $m$ books in black cover and $n$ books in blue cover, and all books are different. The number of ways these $(m+n)$ books can be arranged on a shelf so that all the books in black cover are put side by side is
The value of $\sum \limits_{ r =0}^{20}{ }^{50- r } C _{6}$ is equal to
The English alphabet has $5$ vowels and $21$ consonants. How many words with two different vowels and $2$ different consonants can be formed from the alphabet?