- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the minimum area of the triangle formed by a tangent to the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ and the co-ordinate axis is $kab,$ then $\mathrm{k}$ is equal to ..... .
A
$1$
B
$3$
C
$2$
D
$7$
(JEE MAIN-2021)
Solution

Tangent
$\frac{x \cos \theta}{b}+\frac{y \sin \theta}{2 a}=1$
So, area $(\Delta \mathrm{OAB})=\frac{1}{2} \times \frac{\mathrm{b}}{\cos \theta} \times \frac{2 \mathrm{a}}{\sin \theta}$
$=\frac{2 \mathrm{ab}}{\sin 2 \theta} \geq 2 \mathrm{ab}$
$\Rightarrow \mathrm{k}=2$
Standard 11
Mathematics