Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be

A

zero

B

$\frac {M^2}{4N}$

C

$\frac {N^2}{4M}$

D

$\frac {MN^2}{4}$

Solution

$\mathrm{F}=\frac{\mathrm{d} \mathrm{U}}{\mathrm{dr}}=-\frac{\mathrm{d}}{\mathrm{dr}}\left[\frac{\mathrm{M}}{\mathrm{r}^{6}}-\frac{\mathrm{N}}{\mathrm{r}^{12}}\right]$

$=-\left[-\frac{6 \mathrm{M}}{\mathrm{r}^{7}}+\frac{12 \mathrm{N}}{\mathrm{r}^{13}}\right]$

In equilibrium position, $F=0$

$\therefore \quad \frac{6 \mathrm{M}}{\mathrm{r}^{7}}-\frac{12 \mathrm{N}}{\mathrm{r}^{13}}=0$

Or         $r^{6}=\frac{2 N}{M}$

Potential energy at equilibrium position,

$\mathrm{U}=\frac{\mathrm{M}}{(2 \mathrm{N} / \mathrm{M})}-\frac{\mathrm{N}}{(2 \mathrm{N} / \mathrm{M})^{2}}$

$=\frac{M^{2}}{2 N}-\frac{M^{2}}{4 N}=\frac{M^{2}}{4 N}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.