If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be

  • A

    zero

  • B

    $\frac {M^2}{4N}$

  • C

    $\frac {N^2}{4M}$

  • D

    $\frac {MN^2}{4}$

Similar Questions

A particle of mass $4\, m$ which is at rest explodes into three fragments. Two of the  fragments each of mass $m$ are found to move with a speed $v$ each in perpendicular directions. The total energy released in the process will be

In the figure shown the potential energy $(U)$ of a particle is plotted against its position $'x'$ from origin. The particle at

$A$ ball is dropped from height $5m$. The time after which ball stops rebounding if coefficient of restitution between ball and ground $e = 1/2$, is .................. $\mathrm{sec}$

A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$

A ball is dropped from height $h$ on a plane. If the coefficient of restitution of the plane is $e$ and if ball hits ground two times, the height upto which it reaches after two jumps, will be