If the probability of $X$ to fail in the examination is $0.3$ and that for $Y$ is $0.2$, then the probability that either $X$ or $Y$ fail in the examination is
$0.5$
$0.44$
$0.6$
None of these
If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are mutually exclusive, then $x = $
A fair coin and an unbiased die are tossed. Let $A$ be the event ' head appears on the coin' and $B$ be the event ' $3$ on the die'. Check whether $A$ and $B$ are independent events or not.
The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is
If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p .$ Find $p$ if they are independent.