In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.
Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
The given information can be represented by a Venn diagram as
It is clear that Number of students who have opted for $NSS$ but not $NCC$
$=n(B-A)=n(B)-n(A \cap B)=32-24=8$
Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$
$=\frac{8}{60}=\frac{2}{15}$
Urn $A$ contains $6$ red and $4$ black balls and urn $B$ contains $4$ red and $6$ black balls. One ball is drawn at random from urn $A$ and placed in urn $B$. Then one ball is drawn at random from urn $B$ and placed in urn $A$. If one ball is now drawn at random from urn $A$, the probability that it is found to be red, is
Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$
Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
A fair coin and an unbiased die are tossed. Let $A$ be the event ' head appears on the coin' and $B$ be the event ' $3$ on the die'. Check whether $A$ and $B$ are independent events or not.
If $A$ and $B$ are arbitrary events, then
Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is