Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Both Anil and Ashima will not qualify the examination.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that

$P(E)=0.05$,  $P(F)=0.10$ and $P(E \cap F)=0.02$

Then

The event ' both Anil and Ashima will not qualify the examination' may be expressed as $E ^{\prime} \cap F^{\prime}$

since, $E ^{\prime}$ is 'not $E^{\prime},$ i.e., Anil will not qualify the examination and $F ^{\prime}$ is 'not $F^{\prime}$, i.e. Ashima will not qualify the examination.

Also $E ^{\prime} \cap F ^{\prime}=( E \cup F )^{\prime}$     (by Demorgan's Law)

Now $P ( E \cup F )= P ( E )+ P ( F )- P ( E \cap F )$

or   $P(E \cup F)=0.05+0.10-0.02=0.13$

Therefore $P\left(E^{\prime} \cap F^{\prime}\right)$ $=P(E \cup F)^{\prime}$ $=1-P(E \cup F)=1-0.13=0.87$

Similar Questions

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?

$\mathrm{E}:$  ' the card drawn is black ' 

$\mathrm{F}:$  ' the card drawn is a king '

The chances to fail in Physics are $20\%$ and the chances to fail in Mathematics are $10\%$. What are the chances to fail in at least one subject ............ $\%$

Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first

For any two events $A$ and $B$ in a sample space

  • [IIT 1991]

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]