Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Both Anil and Ashima will not qualify the examination.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that

$P(E)=0.05$,  $P(F)=0.10$ and $P(E \cap F)=0.02$

Then

The event ' both Anil and Ashima will not qualify the examination' may be expressed as $E ^{\prime} \cap F^{\prime}$

since, $E ^{\prime}$ is 'not $E^{\prime},$ i.e., Anil will not qualify the examination and $F ^{\prime}$ is 'not $F^{\prime}$, i.e. Ashima will not qualify the examination.

Also $E ^{\prime} \cap F ^{\prime}=( E \cup F )^{\prime}$     (by Demorgan's Law)

Now $P ( E \cup F )= P ( E )+ P ( F )- P ( E \cap F )$

or   $P(E \cup F)=0.05+0.10-0.02=0.13$

Therefore $P\left(E^{\prime} \cap F^{\prime}\right)$ $=P(E \cup F)^{\prime}$ $=1-P(E \cup F)=1-0.13=0.87$

Similar Questions

Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p .$ Find $p$ if they are independent.

A die is thrown. Let $A$ be the event that the number obtained is greater than $3.$ Let $B$ be the event that the number obtained is less than $5.$ Then $P\left( {A \cup B} \right)$ is

  • [AIEEE 2008]

A card is drawn from a pack of $52$ cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet

$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [IIT 1975]