જો $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ નો વિસ્તાર $[\alpha, \beta]$ હોય, તો જેનું પ્રથમ પદ $64$ હોય અને સામાન્ય ગુણોત્તર $\frac{\alpha}{\beta}$ હોય તેવી અનંત સમગુણોત્તર શ્રેણીનો સરવાળો ............ છે. 

  • [JEE MAIN 2024]
  • A

    $96$

  • B

    $46$

  • C

    $27$

  • D

    $52$

Similar Questions

સમગુણોત્તર શ્રેણી $\frac{{\sqrt 2  + 1}}{{\sqrt 2  - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....\,$ ના અનંત પદોનો સરવાળો કેટલો થાય?

જો $a $ અને $b$ વચ્ચેના સમગુણોત્તર મધ્યક $H$ હોય, તો $\frac{1}{{H\, - \,a}}\, + \,\frac{1}{{H - b}}$ નું મૂલ્ય કેટલું થાય ?

એક સમગુણોત્તર શ્રેણીનાં બધાં પદ ધન છે. તેનું દરેક પદ, તે પદ પછીનાં બે પદના સરવાળા જેટલું હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર.... હશે.

જો $a, b, c, d $ સમગુણોત્તર શ્રેણીમાં હોય, તો ($a^3$ + $b^3$) $^{-1}, $ ($b^3$ + $c^3$) $^{-1}, $ ($c^3$ + $d^3$) $^{-1 } $ કઈ શ્રેણીમાં હશે ?

જો સમગુણોત્તર શ્રેણી $a_1, a_2, a_3......$ નું પ્રથમ પદ એક છે કે જેથી $4a_2 + 5a_3$ એ ન્યૂનતમ થાય તો સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર મેળવો.