If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$
It is given that set $A$ has $3$ elements and the elements of set $B$ are $3,4,$ and $5.$
$\Rightarrow$ Number of elements in set $B=3$
Number of elements in $(A \times B)$
$ = {\rm{ (}}$ Number of elements in $A) \times {\rm{ (}}$ Number of elements in $B)$
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ in $9$
If $A = \{ x:{x^2} - 5x + 6 = 0\} ,\,B = \{ 2,\,4\} ,\,C = \{ 4,\,5\} ,$ then $A \times (B \cap C)$ is
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2 .$ If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times C$ is a subset of $B \times D$