यदि समुच्चय $A$ में $3$ अवयव हैं तथा समुच्चय $B =\{3,4,5\},$ तो $( A \times B )$ में अवयवों की संख्या ज्ञात कीजिए।
It is given that set $A$ has $3$ elements and the elements of set $B$ are $3,4,$ and $5.$
$\Rightarrow$ Number of elements in set $B=3$
Number of elements in $(A \times B)$
$ = {\rm{ (}}$ Number of elements in $A) \times {\rm{ (}}$ Number of elements in $B)$
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ in $9$
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$A \times(B \cap C)$
माना बिंदु $(-1,0)$ से होकर जाने वाला तथा रेखा $y=x$ को $(1,1)$ पर स्पर्श करने वाला द्विघातीय वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x})$ है, तो प्रथम चतुर्थांश में बिंदु $(\alpha, \alpha+1)$ पर वक्र के अभिलंब का $\mathrm{x}$-अंतःखंड है :
यदि $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ तो $x$ तथा $y$ ज्ञात कीजिए।
यदि $A, B $ तथा $C$ तीन समुच्चय हैं, तब $A × (B \cup C) $ बराबर है
यदि $G =\{7,8\}$ और $H =\{5,4,2\},$ तो $G \times H$ और $H \times G$ ज्ञात कीजिए।