If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to
$36$
$42$
$27$
$30$
For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.
Statement $1$ : $z$ is a real number
Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
The values of $z$for which $|z + i|\, = \,|z - i|$ are
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is