જો $A$ અને $B$ વ્યાખ્યાયિત હોય $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $,તો
$A \cap B = A$
$A \cap B = B$
$A \cap B = \phi $
એકપણ નહી.
જો $n(A) = 3$, $n(B) = 6$ અને $A \subseteq B$. તો $A \cup B$ માં રહેલ ઘટકો મેળવો.
બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $B-A$
$A$ અને $B$ ગણો છે. કોઈ ગણ $X$ માટે જો $A \cap X=B \cap X=\phi$ અને $A \cup X=B \cup X$ તો સાબિત કરો કે $A = B$
( સૂચનઃ $A = A \cap (A \cup X),B = B \cap (B \cup X)$ અને વિભાજનના નિયમનો ઉપયોગ કરો. )
જો $X = \{ {4^n} - 3n - 1:n \in N\} $ અને $Y = \{ 9(n - 1):n \in N\} ,$ તો $X \cup Y$ = . . . . .