Gujarati
6-2.Equilibrium-II (Ionic Equilibrium)
hard

If the solubility product of $AgBr{O_3}$ and $A{g_2}S{O_4}$ are $5.5 \times {10^{ - 5}}$ and $2 \times {10^{ - 5}}$ respectively, the relationship between the solubilities of these can be correctly represented as

A

${S_{AgBr{O_3}}} > {S_{A{g_2}S{O_4}}}$

B

${S_{AgBr{O_3}}} < {S_{A{g_2}S{O_4}}}$

C

${S_{AgBr{O_3}}} = {S_{A{g_2}S{O_4}}}$

D

${S_{AgBr{O_3}}} \approx {S_{A{g_2}S{O_4}}}$

Solution

(b) $A{g_2}S{O_4} \rightleftharpoons  \mathop {2A{g^ + }}\limits_{4{S^2}} + \mathop {SO_4^{ – \, – }}\limits_{S\,\,\,\,\,\,\,\,} $

${K_{sp}} = 4{S^3};\,\,{K_{sp}} = 2 \times {10^{ – 5}}$

$S = \sqrt[3]{{\frac{{2 \times {{10}^{ – 5}}}}{4}}} = 0.017\,m/l$$ = 1.7 \times {10^{ – 2}}$

$AgBr{O_3} ⇌\mathop {A{g^ + }}\limits_S + \mathop {BrO_3^ – }\limits_S $

${K_{sp}} = {S^2};\,\,{K_{sp}} = 5.5 \times {10^{ – 5}}$

$S = \sqrt {5.5 \times {{10}^{ – 5}}} = 7.4 \times {10^{ – 3}}\,m/l.$

Standard 11
Chemistry

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.