- Home
- Standard 11
- Chemistry
The solubility of salt of weak acid $MX$ (e.g. phosphoric) is increase at tower $pH$ explain with equation.
Solution
The solubility of salt of weak acid like $\mathrm{Na}_{3} \mathrm{PO}_{4}$ increases at lower $\mathrm{pH}$ because as lower $\mathrm{pH}$ concentration of union $\mathrm{X}^{-}$decreases due to protonation so $\mathrm{X}^{-}$decrease and solubility of $\mathrm{MX}$ increases.
$\mathrm{MX}+\mathrm{M}_{\text {(aq) }}^{+}+\mathrm{X}_{\text {(aq) }}^{-} \quad \ldots . \text { (Eq.-i) }$
$\mathrm{K}_{s p}=\left[\mathrm{M}^{+}\right]\left[\mathrm{X}^{-}\right]\quad \ldots(\mathrm{Eq} .-\mathrm{ii})$
MX is the salt of weak acid ($HX$) ionization of weak acid is as follows.
$\mathrm{HX}_{\text {(aq) }} \square \mathrm{H}_{\text {(aq) }}^{+}+\mathrm{X}_{\text {(aq) }}^{-} \ldots \text { (Eq.-$iii$) }$
Note : In this salt and weak acid the common ion is $\mathrm{X}^{-}$.
(Eq.-$iii$) ionization constant for weak acid
$\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{\text {(aq) }}^{+}\right]\left[\mathrm{X}_{\text {(aq) }}^{-}\right]}{\mathrm{HX}_{\text {(aq) }}} \ldots . . \text { (Eq.-iv) }$
$\therefore\frac{\mathrm{K}_{a}}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
$\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{a}}+1=\frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}+1$
$\therefore\frac{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{a}}{\mathrm{~K}_{a}}=\frac{[\mathrm{HX}]+\left[\mathrm{X}^{-}\right]}{\left[\mathrm{X}^{-}\right]}$
$\frac{\mathrm{K}_{a}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{a}}=\frac{\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]+\left[\mathrm{X}^{-}\right]}=\mathrm{f} \quad \ldots(\text { Eq.-v) }$
So $\left[\mathrm{H}^{+}\right]$increases $\mathrm{pH}$ decreases and with of ' $\mathrm{f}$ ' decrease.