If the straight line $y = mx + c$ touches the circle ${x^2} + {y^2} - 2x - 4y + 3 = 0$ at the point $(2, 3)$, then $c =$

  • A

    $-3$

  • B

    $4$

  • C

    $5$

  • D

    $-2$

Similar Questions

The equation of three circles are ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ and ${x^2} + {y^2} - 16x + 81 = 0.$ The co-ordinates of the point from which the length of tangent drawn to each of the three circle is equal is

Let the tangents at two points $A$ and $B$ on the circle $x ^{2}+ y ^{2}-4 x +3=0$ meet at origin $O (0,0)$. Then the area of the triangle of $OAB$ is.

  • [JEE MAIN 2022]

If the line $y$ $\cos \alpha = x\sin \alpha + a\cos \alpha $ be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then

Square of the length of the tangent drawn from the point $(\alpha ,\beta )$ to the circle $a{x^2} + a{y^2} = {r^2}$ is

Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to

  • [JEE MAIN 2023]