The set of all values of $a^2$ for which the line $x + y =0$ bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ is equal to:

  • [JEE MAIN 2023]
  • A

    $(8, \infty)$

  • B

    $(4, \infty)$

  • C

    $(0,4]$

  • D

    $(2,12]$

Similar Questions

Tangents $AB$ and $AC$ are drawn from the point $A(0,\,1)$ to the circle ${x^2} + {y^2} - 2x + 4y + 1 = 0$. Equation of the circle through $A, B$ and $C$ is

Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is

  • [JEE MAIN 2016]

A tangent drawn from the point $(4, 0)$ to the circle $x^2 + y^2 = 8$ touches it at a point $A$ in the first quadrant. The co-ordinates of another point $B$ on the circle such that $l\, (AB) = 4$ are :

If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then

  • [JEE MAIN 2020]

The equation of circle which touches the axes of coordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$, where $c$ is