- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the straight line $x\cos \alpha + y\sin \alpha = p$ be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, then
A
${a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha = {p^2}$
B
${a^2}{\cos ^2}\alpha - {b^2}{\sin ^2}\alpha = {p^2}$
C
${a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha = {p^2}$
D
${a^2}{\sin ^2}\alpha - {b^2}{\cos ^2}\alpha = {p^2}$
Solution
(b) $x\cos \alpha + y\sin \alpha = p$
$\Rightarrow y = – \cot \alpha .\,\,x + p{\rm{cosec }}\alpha $
It is tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$
Therefore, ${p^2}{\rm{cose}}{{\rm{c}}^2}\alpha = {a^2}{\cot ^2}\alpha – {b^2}$
$ \Rightarrow {a^2}{\cos ^2}\alpha – {b^2}{\sin ^2}\alpha = {p^2}$.
Standard 11
Mathematics