If the straight line $x\cos \alpha + y\sin \alpha = p$ be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, then
${a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha = {p^2}$
${a^2}{\cos ^2}\alpha - {b^2}{\sin ^2}\alpha = {p^2}$
${a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha = {p^2}$
${a^2}{\sin ^2}\alpha - {b^2}{\cos ^2}\alpha = {p^2}$
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies
Let a line $L: 2 x+y=k, k\,>\,0$ be a tangent to the hyperbola $x^{2}-y^{2}=3 .$ If $L$ is also a tangent to the parabola $y^{2}=\alpha x$, then $\alpha$ is equal to :
The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if
The line $lx + my + n = 0$ will be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
The length of transverse axis of the parabola $3{x^2} - 4{y^2} = 32$ is