10-2. Parabola, Ellipse, Hyperbola
medium

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Option A
Option B
Option C
Option D

Solution

The given equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1$

On comparing this equation with the standard equation of hyperbola i.e., $\frac{ x ^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=3$.

We known that $a^{2}=b^{2}+c^{2}$

$\therefore c^{2}=4^{2}+3^{2}=25$

$\Rightarrow c=5$

Therefore,

The coordinates of the foci are $(±5,\,0)$

The coordinates of the vertices are $(±4,\,0)$

Eccentricity, $e=\frac{c}{a}=\frac{5}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.