Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
The given equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1$
On comparing this equation with the standard equation of hyperbola i.e., $\frac{ x ^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=3$.
We known that $a^{2}=b^{2}+c^{2}$
$\therefore c^{2}=4^{2}+3^{2}=25$
$\Rightarrow c=5$
Therefore,
The coordinates of the foci are $(±5,\,0)$
The coordinates of the vertices are $(±4,\,0)$
Eccentricity, $e=\frac{c}{a}=\frac{5}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$
Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 2,\,0),$ foci $(\pm 3,\,0)$
The normal to the rectangular hyperbola $xy = c^2$ at the point $'t_1'$ meets the curve again at the point $'t_2'$ . Then the value of $t_{1}^{3} t_{2}$ is
Let $A$ be a point on the $x$-axis. Common tangents are drawn from $A$ to the curves $x^2+y^2=8$ and $y^2= 16x.$ If one of these tangents touches the two curves at $Q$ and $R$, then $( QR )^2$ is equal to
The value of $m$, for which the line $y = mx + \frac{{25\sqrt 3 }}{3}$, is a normal to the conic $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$, is
The auxiliary equation of circle of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is