यदि सरल रेखा $x\cos \alpha + y\sin \alpha = p$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा हो, तब
${a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha = {p^2}$
${a^2}{\cos ^2}\alpha - {b^2}{\sin ^2}\alpha = {p^2}$
${a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha = {p^2}$
${a^2}{\sin ^2}\alpha - {b^2}{\cos ^2}\alpha = {p^2}$
माना अतिपरवलय $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$ पर प्रथम चतुर्थांश में एक बिंदु $P$ तथा $H$ फी दो नामियों से बने त्रिभुज का क्षेत्रफल $2 \sqrt{13}$ है। तो $\mathrm{P}$ की मूल बिंदु से दूरी का वर्ग है।
अतिपरवलय $4{y^2} = {x^2} - 1$ के बिन्दु $(1, 0)$ पर स्पर्श रेखा का समीकरण होगा
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(±4,0)$, नाभिलंब जीवा की लंबाई $12$ है।
अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा
अतिपरवलय $4{x^2} - 9{y^2} = 16$ की उत्केन्द्रता है