Gujarati
10-2. Parabola, Ellipse, Hyperbola
hard

यदि सरल रेखा $x\cos \alpha  + y\sin \alpha  = p$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा हो, तब

A

${a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha = {p^2}$

B

${a^2}{\cos ^2}\alpha - {b^2}{\sin ^2}\alpha = {p^2}$

C

${a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha = {p^2}$

D

${a^2}{\sin ^2}\alpha - {b^2}{\cos ^2}\alpha = {p^2}$

Solution

(b) $x\cos \alpha  + y\sin \alpha  = p$

$\Rightarrow y =  – \cot \alpha .\,\,x + p{\rm{cosec }}\alpha $

यह अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श  है।

अत :${p^2}{\rm{cose}}{{\rm{c}}^2}\alpha  = {a^2}{\cot ^2}\alpha  – {b^2}$

$ \Rightarrow {a^2}{\cos ^2}\alpha  – {b^2}{\sin ^2}\alpha  = {p^2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.