જો ${(1 - 3x + 10{x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $a$ છે અને ${(1 + {x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $b$ હોય , તો . . . .
$a = 3b$
$a = {b^3}$
$b = {a^3}$
એકપણ નહીં.
$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ = . . .
$4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ ની કિમત મેળવો
$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ માં $x ^{301}$નો સહગુણક $........$ છે.
જો $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ અને $b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ હોય તો $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ ની કિમત મેળવો
$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો
(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)