If the sum of the coefficients in the expansion of $(x+y)^{n}$ is $4096,$ then the greatest coefficient in the expansion is .... .
$111$
$222$
$924$
$347$
If $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$
$\equiv a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ then $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ has the value equal to
Let $(1+2 x)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$.Then $3 a_0+2 a_1+3 a_2+2 a_3+3 a_4+2 a_5+\ldots+2 a_{19}+3 a_{20}$ equals
The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$