If the sum of two unit vectors is also a unit vector. then magnitude of their difference and angle between the two given unit vectors is ..............
$\sqrt{3}, 60^{\circ}$
$\sqrt{3}, 120^{\circ}$
$\sqrt{2}, 60^{\circ}$
$\sqrt{2}, 120^{\circ}$
A cyclist starts from the centre $O$ of a circular park of radius $1\; km$, reaches the edge $P$ of the park, then cycles along the circumference, and returns to the centre along $QO$ as shown in Figure. If the round trip takes $10 \;min$, what is the
$(a)$ net displacement,
$(b)$ average velocity, and
$(c)$ average speed of the cyclist ?
$\overrightarrow{ A }=4 \hat{ i }+3 \hat{ j }$ and $\overrightarrow{ B }=4 \hat{ i }+2 \hat{ j }$. Find a vector parallel to $\overrightarrow{ A }$ but has magnitude five times that of $\vec{B}$.
The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to
If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then