જો બે એકમ સદિશનો સરવાળો પણ એક એકમ સદિશ હોય તો તેમના માપન મુલ્યનો તફાવત અને તે બે સદીશો વચ્ચે બનતો કોણ કેટલો હેશે ?
$\sqrt{3}, 60^{\circ}$
$\sqrt{3}, 120^{\circ}$
$\sqrt{2}, 60^{\circ}$
$\sqrt{2}, 120^{\circ}$
એક મુસાફર એક નવા શહેરમાં સ્ટેશન પર ઊતરીને ટેક્સી કરે છે. સ્ટેશનથી સુરેખ રોડ પર તેની હોટલ $10 \,km$ દૂર છે. ટેક્સી ડ્રાઇવર મુસાફરને $23\, km$ લંબાઈના વાંકાચૂંકા માર્ગે $28 \,min$ માં હોટલ પર પહોંચાડે છે, તો $(a)$ ટેક્સીની સરેરાશ ઝડપ અને $(b)$ સરેરાશ વેગનું મૂલ્ય કેટલું હશે ? શું આ બંને સમાન હશે ?
સદિશ $A$ અને $B$ નો પરિણામી સદિશ,સદિશ $A$ ને લંબ છે,અને તેનું મૂલ્ય $B$ સદિશથી અડધું છે,તો સદિશ $A$ અને $ B$ વચ્ચેનો ખૂણો ....... $^o$ થશે.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
$P\,\, = \,\,{\rm{Q}}\,\, = \,\,{\rm{R}}$ જો $\mathop {\,{\rm{P}}}\limits^ \to \,\, + \;\,\mathop {\rm{Q}}\limits^ \to \,\, = \,\,\mathop {\rm{R}}\limits^ \to \,$ હોય તથા $\mathop {\rm{P}}\limits^ \to $ અને $\mathop {\rm{R}}\limits^ \to $ વચ્ચેનો ખૂણો ${\theta _1}$ છે. જો $\mathop {\rm{P}}\limits^ \to \,\, + \;\,\mathop {\rm{Q}}\limits^ \to \,\, + \,\,\mathop {\rm{R}}\limits^ \to \,\, = \,\,\mathop {\rm{0}}\limits^ \to $ હોય તો $\mathop {\rm{P}}\limits^ \to $ અને $\mathop {\rm{R}}\limits^ \to $ વચ્ચેનો ખૂણો ${\theta _2}$ છે. ${\theta _1}$ અને ${\theta _2}$ વચ્ચેનો સંબંધ શું કહે ?
સદિશ $\mathop A\limits^ \to \,$ અને $ \,\mathop B\limits^ \to $ x-અક્ષની સાપેક્ષે અનુક્રમે $20^0$ અને $110^0$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5 m$ અને $12 m$ છેતો તેના પરિણામી સદીશે x-અક્ષ સાથે રચાતા ખૂણાનું મૂલ્ય ..... મળેે.