- Home
- Standard 11
- Physics
$a + b + c + d = 0$ આપેલ છે. નીચે આપેલ વિધાનોમાંથી ક્યું સાચું છે :
$(a)$ $a, b, c$ તથા તે દરેક શૂન્ય સદિશ છે.
$(b)$ $(a + c)$ નું મૂલ્ય $(b + d)$ ના મૂલ્ય જેટલું છે.
$(c)$ $a$ નું માન $b, c$ તથા તેના માનના સરવાળાથી ક્યારેય વધારે ન હોઈ શકે.
$(d)$ જો $a$ અને $d$ એક રેખસ્થ ન હોય તો $b+c, a$ અને $d$ વડે બનતા સમતલમાં હશે અને જો $a$ અને $b$ તે એક રેખસ્થ હોય, તો તે $a$ અને $b$ તેની રેખામાં હશે.
Solution
$(a)$ Incorrect : In order to make $a+b+c+d=0,$ it is not necessary to have all the four given vectors to be null vectors. There are many other combinations which can give the sum zero.
$(b)$ Correct : $a + b + c + d = 0 a + c =-( b + d )$
Taking modulus on both the sides, we get:
$| a + c |=|-( b + d )|=| b + d |$
Hence, the magnitude of $(a+c)$ is the same as the magnitude of $(b+d)$
$(c)$ Correct : $a+b+c+d=0 a=(b+c+d)$
Taking modulus both sides, we get:
$| a |=| b + c + d |$
$| a | \leq| a |+| b |+| c | \ldots \ldots(i)$
Equation $(i)$ shows that the magnitude of $a$ is equal to or less than the sum of the magnitudes of $b , c ,$ and $d$ Hence, the magnitude of vector $a$ can never be greater than the sum of the magnitudes of $b , c ,$ and $d$
$(d)$ Correct : For $a+b+c+d=0$
The resultant sum of the three vectors $a,(b+c),$ and $d$ can be zero only if $(b+c)$ lie in a plane containing a and $d$, assuming that these three vectors are represented by the three sides of a triangle.
If $a$ and $d$ are collinear, then it implies that the vector ( $b+c$ ) is in the line of $a$ and $d$. This implication holds only then the vector sum of all the vectors will be zero.