Let $\alpha \beta \neq 0$ and $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. If $B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ is the matrix of cofactors of the elements of $A$, then $\operatorname{det}(A B)$ is equal to.

  • [JEE MAIN 2024]
  • A

    $343$

  • B

    $125$

  • C

    $64$

  • D

    $216$

Similar Questions

If $a_i^2 + b_i^2 + c_i^2 = 1,\,i = 1,2,3$ and $a_ia_j + b_ib_j +c_ic_j = 0$ $\left( {i \ne j,i,j = 1,2,3} \right)$ then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{b_1}}&{{b_2}}&{{b_3}} \\ 
  {{c_1}}&{{c_2}}&{{c_3}} 
\end{array}} \right|$ is

Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$ 

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is