જો રેખીય સમીકરણો $x + y+ z = 5$ ; $x + 2y + 3z = 9$ ; $x + 3y + \alpha z = \beta $ એ અનંત ઉકેલ ધરાવે છે તો $\beta - \alpha $ મેળવો.
$21$
$8$
$18$
$5$
જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.
સમીકરણોની જોડ $12x + by + cz = 0$ ; $ax + 24y + cz = 0$ ; $ax + by + 36z = 0$ . (કે જ્યાં $a$ , $b$ , $c$ એ વાસ્તવિક સંખ્યા છે કે જેથી $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ). જો સમીકરણો ની જોડ સુસંગત હોય અને $z \ne 0$ હોય તો $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$ તો $x =$
$\mathrm{A}$ એ $3 \times 3$ કક્ષાનો ચોરસ શ્રેણિક હોય, તો $|\mathrm{k A}|$ $=$ ........
જો $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ એ ત્રણ અંકોની સંખ્યા છે કે જે $k$ વડે વિભાજ્ય છે અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\
{{A_2}}&{{B_2}}&{{C_2}} \\
{{A_3}}&{{B_3}}&{{C_3}}
\end{array}} \right|$ હોય તો $\Delta $ એ . . વડે વિભાજ્ય છે .