3 and 4 .Determinants and Matrices
medium

If the system of equations $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ has infinitely many solutions, then the ordered pair $(\alpha, \beta)$ is equal to:

A

$(1,-3)$

B

$(-1,3)$

C

$(1,3)$

D

$(-1,-3)$

(JEE MAIN-2022)

Solution

For infinitely many solutions,

$\Delta=0=\Delta_{ x }=\Delta_{ y }=\Delta_{ z }$

$\Delta=\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right|=0$

$\Rightarrow \alpha(10-9)-1(5-3)+1(3-2)=0$

$\Rightarrow \alpha-2+1=0$

$\Rightarrow \alpha=1$

$\Delta_{x}=\left|\begin{array}{lll}5 & 2 & 3 \\ \beta & 3 & 5\end{array}\right|=0$

$\Rightarrow 5(10-9)-1(20-3 \beta)+1(12-2 \beta)$

$\Rightarrow 5-20+3 \beta+12-2 \beta$

$\Rightarrow-3+\beta=0$

$\Rightarrow \beta=3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.