બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને  $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ 

$x+y+z=5$    ;    $x+2 y+3 z=\mu$   ;     $x+3 y+\lambda z=1$

ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો

  • [JEE MAIN 2021]
  • A

    $\mathrm{p}=\frac{1}{6}$ અને $\mathrm{q}=\frac{1}{36}$

  • B

    $\mathrm{p}=\frac{5}{6}$ અને $\mathrm{q}=\frac{5}{36}$

  • C

    $\mathrm{p}=\frac{5}{6}$ અને $\mathrm{q}=\frac{1}{36}$

  • D

    $\mathrm{p}=\frac{1}{6}$ અને $\mathrm{q}=\frac{5}{36}$

Similar Questions

જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .

સુરેખ સમીકરણો $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ કે જ્યાં $a,b,c$  એ શૂન્યતર વાસ્તવિક સંખ્યા છે . જો વાસ્તવિક સંખ્યાઓ $x,y,z$ છે કે જેથી  $xyz \neq 0,$ તો   $(a + b + c)$ મેળવો.

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

જો $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$  હોય તો  $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ એ.. .. વડે વિભાજ્ય નથી.