3 and 4 .Determinants and Matrices
medium

If the system of linear equations $x+y+3 z=0$

$x+3 y+k^{2} z=0$

$3 x+y+3 z=0$

has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to

A

$9$

B

$-3$

C

$-9$

D

$3$

(JEE MAIN-2020)

Solution

$x+y+3 z=0$

$x+3 y+k^{2} z=0$

$3 x+y+3 z=0$

$\left|\begin{array}{lll}1 & 1 & 3 \\ 1 & 3 & k^{2} \\ 3 & 1 & 3\end{array}\right|=0$

$\Rightarrow 9+3+3 k^{2}-27-k^{2}-3=0$

$\Rightarrow k ^{2}=9$

(i) $-$ (iii) $\Rightarrow-2 x =0 \Rightarrow x =0$

Now from (i) $\Rightarrow y +3 z =0$

$\Rightarrow \frac{y}{z}=-3$

$x+\frac{y}{z}=-3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.