If the tangents drawn at the point $O (0,0)$ and $P (1+\sqrt{5}, 2)$ on the circle $x ^{2}+ y ^{2}-2 x -4 y =0$ intersect at the point $Q$, then the area of the triangle $OPQ$ is equal to
$\frac{3+\sqrt{5}}{2}$
$\frac{4+2 \sqrt{5}}{2}$
$\frac{5+3 \sqrt{5}}{2}$
$\frac{7+3 \sqrt{5}}{2}$
Let $B$ be the centre of the circle $x^{2}+y^{2}-2 x+4 y+1=0$ Let the tangents at two points $\mathrm{P}$ and $\mathrm{Q}$ on the circle intersect at the point $\mathrm{A}(3,1)$. Then $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ is equal to .... .
The normal at the point $(3, 4)$ on a circle cuts the circle at the point $(-1, -2)$. Then the equation of the circle is
The angle between the tangents drawn from the origin to the circle $(x -7)^2 + (y + 1)^2 = 25$ is :-
Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M (-1,1)$ intersect the circle $C _{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to
If $2x - 4y = 9$ and $6x - 12y + 7 = 0$ are the tangents of same circle, then its radius will be