- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
If the two circles, $x^2 + y^2 + 2 g_1x + 2 f_1y = 0\, \& \,x^2 + y^2 + 2 g_2x + 2 f_2y = 0$ touch each then:
A
$f_1 g_1 = f_2 g_2$
B
$\frac{{{f_1}}}{{{g_1}}} = \frac{{{f_2}}}{{{g_2}}}$
C
$f_1 f_2 = g_1 g_2$
D
none
Solution

circles can touch only at $(0, 0)$
$\Rightarrow \, (-g, -f_1); (0, 0)$ and $(-g_2, -f_2)$ collinear $\Rightarrow \frac{{{f_1}}}{{{g_1}}} = \frac{{{f_2}}}{{{g_2}}}$
Standard 11
Mathematics