- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
Let the equation $x^{2}+y^{2}+p x+(1-p) y+5=0$ represent circles of varying radius $\mathrm{r} \in(0,5]$. Then the number of elements in the set $S=\left\{q: q=p^{2}\right.$ and $\mathrm{q}$ is an integer $\}$ is ..... .
A
$60$
B
$61$
C
$62$
D
$63$
(JEE MAIN-2021)
Solution
$r=\sqrt{\frac{\mathrm{p}^{2}}{4}+\frac{(1-\mathrm{p})^{2}}{4}-5}=\frac{\sqrt{2 \mathrm{p}^{2}-2 \mathrm{p}-19}}{2}$
Since, $r \in(0,5]$
So, $0\,<\,2 \mathrm{p}^{2}-2 \mathrm{p}-19\, \leq 100$
$\Rightarrow \mathrm{p} \in\left[\frac{1-\sqrt{239}}{2}, \frac{1-\sqrt{39}}{2}\right) \cup\left(\frac{1+\sqrt{39}}{2}, \frac{1+\sqrt{239}}{2}\right]$ so, number of integral values of $\mathrm{p}^{2}$ is $61.$
Standard 11
Mathematics
Similar Questions
normal