- Home
- Standard 11
- Mathematics
The equation to the locus of the middle point of the portion of the tangent to the ellipse $\frac{{{x^2}}}{{16}}$$+$ $\frac{{{y^2}}}{9}$ $= 1$ included between the co-ordinate axes is the curve :
$9x^2 + 16y^2 = 4 x^2y^2$
$16x^2 + 9y^2 = 4 x^2y^2$
$3x^2 + 4y^2 = 4 x^2y^2$
$9x^2 + 16y^2 = x^2y^2$
Solution
Let any tangent of ellipse is $\frac{x \cos \theta}{4}+\frac{y \sin \theta}{3}=1$
Let it meets axes at $A\left(\frac{4}{\cos \theta}, 0\right) \& B\left(0, \frac{3}{\sin \theta}\right)$
Let midpoint of $A B$ is $(h, k)$ then
$2 h=\frac{4}{\cos \theta}, 2 k=\frac{3}{\sin \theta}$
$\because \cos ^{2} \theta+\sin ^{2} \theta=1$
$\therefore \frac{16}{4 h^{2}}+\frac{9}{4 k^{2}}=1$
$\Rightarrow 16 k^{2}+9 h^{2}=4 h^{2} k^{2}$
Hence, locus is $16 y^{2}+9 x^{2}=4 x^{2} y^{2}$