Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle
Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .
Statement $-1$ is true, statement $-2$ is true but statement $-1$ is not the correct explanation for statement $-2$
Statement $-1$ is true, statement $-2$ is false
Statement $-1$ is false, statement $-2$ is true
Both statements are true, and statement $-1$ is the true explanation of statement $-2$
The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $ . Then the equation of the ellipse is :
If $x = 9$ is the chord of contact of the hyperbola ${x^2} - {y^2} = 9$, then the equation of the corresponding pair of tangents is
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
($A$) The area of the quadrilateral $A_1 A _2 A _3 A _4$ is $35$ square units
($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units
($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$
($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$
If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\pi\over2$, then the eccentricity of the ellipse is
The point $(4, -3)$ with respect to the ellipse $4{x^2} + 5{y^2} = 1$