8. Sequences and Series
hard

If three successive terms of a$G.P.$ with common ratio $r(r>1)$ are the lengths of the sides of a triangle and $[\mathrm{r}]$ denotes the greatest integer less than or equal to $r$, then $3[r]+[-r]$ is equal to :

A

$1$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2024)

Solution

$\text { a, ar, } a r^2 \rightarrow \text { G.P. }$

Sum of any two sides $>$ third side

$ a+a r>a r^2, a+a r^2>a r, a r+a r^2>a $

$ r^2-r-1<0 $

$ r \in\left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right) $

$ r^2-r+1>0$                    $…………(1)$

always true

$ \mathrm{r}^2+\mathrm{r}-1>0 $

$ \mathrm{r} \in\left(-\infty,-\frac{1-\sqrt{5}}{2}\right) \cup\left(\frac{-1+\sqrt{5}}{2}, \infty\right)$               $……………(2)$

Taking intersection of $(1)$, $(2)$

$\mathrm{r} \in\left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$

As $\mathrm{r}>1$

$ r \in\left(1, \frac{1+\sqrt{5}}{2}\right) $

$ {[r]=1[-r]=-2} $

$ 3[r]+[-r]=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.