Which term of the following sequences:
$\quad 2,2 \sqrt{2}, 4, \ldots$ is $128 ?$
The given sequence is $2,2 \sqrt{2}, 4 \ldots \ldots$ is $128 ?$
Here, $a=2$ and $r=(2 \sqrt{2}) / 2=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be $128 .$
$a_{n}=a r^{n-1}$
$\Rightarrow(2)(\sqrt{2})^{n-1}=128$
$\Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7}$
$\Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7}$
$\therefore \frac{n-1}{2}+1=7$
$\Rightarrow \frac{n-1}{2}=6$
$\Rightarrow n-1=12$
$\Rightarrow n=13$
Thus, the $13^{\text {th }}$ term of the given sequence is $128$
If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a $G.P.$ are $a, b$ and $c,$ respectively. Prove that
$a^{q-r} b^{r-p} c^{p-q}=1$
If in a geometric progression $\left\{ {{a_n}} \right\},\;{a_1} = 3,\;{a_n} = 96$ and ${S_n} = 189$ then the value of $n$ is
Find the $10^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $5,25,125, \ldots$
Find the sum to $n$ terms of the sequence, $8,88,888,8888 \ldots$
The value of ${4^{1/3}}{.4^{1/9}}{.4^{1/27}}...........\infty $ is