Which term of the following sequences:
$\quad 2,2 \sqrt{2}, 4, \ldots$ is $128 ?$
The given sequence is $2,2 \sqrt{2}, 4 \ldots \ldots$ is $128 ?$
Here, $a=2$ and $r=(2 \sqrt{2}) / 2=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be $128 .$
$a_{n}=a r^{n-1}$
$\Rightarrow(2)(\sqrt{2})^{n-1}=128$
$\Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7}$
$\Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7}$
$\therefore \frac{n-1}{2}+1=7$
$\Rightarrow \frac{n-1}{2}=6$
$\Rightarrow n-1=12$
$\Rightarrow n=13$
Thus, the $13^{\text {th }}$ term of the given sequence is $128$
A $G.P.$ consists of an even number of terms. If the sum of all the terms is $5$ times the sum of the terms occupying odd places, then the common ratio will be equal to
If $a,\;b,\;c$ are in $G.P.$, then
Find four numbers forming a geometric progression in which the third term is greater than the first term by $9,$ and the second term is greater than the $4^{\text {th }}$ by $18 .$
If $3 + 3\alpha + 3{\alpha ^2} + .........\infty = \frac{{45}}{8}$, then the value of $\alpha $ will be
If $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ then $S$ is equal to