જો સામાન્ય ગુણોત્તર $r (r>1)$ વાળી એક ગુણોત્તર શ્રેણી ($G.P.$) ના ત્રણ ક્રમિક પદો , એ એક ત્રિકોણની ત્રણ બાજુઓની લંબાઈઓ છે અને $[\mathrm{r}]$ એ $\mathrm{r}$ કે તેથી નાનો હોય તેવો મહત્તમ પૂણાંક દર્શાવે છે, તો $3[\mathrm{r}]+[-\mathrm{r}]=$___________.
$1$
$2$
$3$
$4$
સમગુણોત્તર શ્રેણી $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + .....\,$ ના ${\text{9}}$ પદોનો સરવાળો શોધો.
જો અનંત સમગુણોતર શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય ગુણોતર $r$ હોય અને શ્રેણીનો સરવાળો $4$ હોય અને બીજું પદ $3/4$ હોય,તો
જો ${a_n}$ એ ધન સંખ્યાઓની સમગુણોતર શ્રેણીનું ${n^{th}}$ પદ છે . જો $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ અને $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, આપેલ છે કે જેથી $\alpha \ne \beta $, તો સામાન્ય ગુણોતર મેળવો.
જો $p, q, r $ કોઇ સમગુણોત્તર શ્રેણીમાં હોય અને $ a, b, c $ કોઇ અન્ય સમગુણોત્તર શ્રેણીમાં હોય, તો $cp, bq $ અને $ar$ એ......
બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ થાય.