The eccentricity of the hyperbola $4{x^2} - 9{y^2} = 16$, is
$\frac{8}{3}$
$\frac{5}{4}$
$\frac{{\sqrt {13} }}{3}$
$\frac{4}{3}$
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
Point from which two distinct tangents can be drawn on two different branches of the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = \,1$ but no two different tangent can be drawn to the circle $x^2 + y^2 = 36$ is
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$
A tangent to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{2} = 1$ meets $x-$ axis at $P$ and $y-$ axis at $Q$. Lines $PR$ and $QR$ are drawn such that $OPRQ$ is a rectangle (where $O$ is the origin). Then $R$ lies on
Find the equation of the hyperbola satisfying the give conditions: Vertices $(0,\,\pm 5),$ foci $(0,\,±8)$