સમાન મૂલ્ય $R$ ધરાવતા બે સદીશો $\vec{A}$ અને $\vec{B}$ વચ્ચેનો ખૂણો $\theta$ છે તો
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$
$x$ એકમ સમાન મૂલ્યના અને એકબીજાને $45^o$ ના ખૂણે રહેલા બે સદિશો નો પરિણામી સદિશ $\sqrt {\left( {2 + \sqrt 2 } \right)} $ એકમ હોય. તો $x$ નું મૂલ્ય શું થાય?
આકૃતિમાં $ABCDEF$ એક સમષટ્કોણ છે. $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ નું મૂલ્ય શું થશે? ($\overrightarrow {AO} $ માં)
જો સદિશ $ 2\hat i + 3\hat j - \hat k $ અને $ - 4\hat i - 6\hat j + \lambda \hat k $ સમાંતર હોય,તો $\lambda = $_______
બે સદિશો $ \hat i - 2\hat j + 2\hat k $ અને $ 2\hat i + \hat j - \hat k, $ માં કયો સદિશ ઉમેરવાથી $X-$ દિશામાંનો એકમ સદિશ મળે.
લિસ્ટ $- I$ ને લિસ્ટ $- II$ સાથે જોડો
નીચેના વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો