समान परिमाण $\mathrm{R}$ के दो सदिशों $\overrightarrow{\mathrm{A}}$ व $\overrightarrow{\mathrm{B}}$ के बीच का कोण $\theta$ है तब
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी
$\mathrm{A}$ व $\frac{\mathrm{A}}{2}$ परिणाम के दो बल एक-दूसरे के लम्बवत हैं। उनके परिणामी का परिमाण है:
समान भुजा के किसी अष्टभुज $ABCDEFGH$ में $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ का योग क्या है, यदि $\overline{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$ है तो।
दो बलों $\overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला बल $\overrightarrow{ R }$ ऐसा है कि $|\overrightarrow{ R }|=|\overrightarrow{ P }|$. यदि $2 \overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला परिणामी बल $\overrightarrow{ Q }$ से $\theta$ कोण (डिग्री में) बनाता हो तो $\theta$ का मान होगा |