समान परिमाण $\mathrm{R}$ के दो सदिशों $\overrightarrow{\mathrm{A}}$ व $\overrightarrow{\mathrm{B}}$ के बीच का कोण $\theta$ है तब
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \sin \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$
दो सदिशों $6\hat i + 7\hat j$ तथा $3\hat i + 4\hat j$ के योग से प्राप्त सदिश का परिमाण है
यदि दो सदिश $2\hat i + 3\hat j - \hat k$ तथा $ - 4\hat i - 6\hat j + \lambda \hat k$ एक दूसरे के समान्तर हों तो का मान होगा
किसी वस्तु पर दो बल ${F_1}$ तथा ${F_2}$ कार्य करते हैं। एक बल दूसरे का दोगुना है तथा इनका परिणामी बड़े बल के बराबर है तो दोनों बलों के बीच कोण है
चित्र में दर्शाये अनुसार तीन सदिशों $\overrightarrow {OA} ,\,\overrightarrow {OB} $ व $\overrightarrow {OC} $ का परिणामी होगा। (वृत्त की त्रिज्या $R$ है)
जब सदिश $\overrightarrow{\mathrm{B}}$ से सदिश $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ को घटाने पर यह $2 \hat{\mathrm{j}}$ के बराबर एक सदिश देता है। तब सदिश $\overrightarrow{\mathrm{B}}$ का परिमाण होगा: