यदि सदिश $\overrightarrow{ A }=\cos \omega \hat{ t }+\sin \omega \hat{ j }$ तथा सदिश $\overrightarrow{ B }=\cos \frac{\omega t }{2} \hat{ i }+\sin \frac{\omega t }{2} \hat{ j }$ समय के फलन है, तो $t$ का मान क्या होगा जिस पर ये सदिश परस्पर लंबकोणि होगी ?
$t=0$
$t=$$\;\frac{\pi }{{4\omega }}$
$t=$$\;\frac{\pi }{{2\omega }}$
$t=$$\;\frac{\pi }{\omega }$
एक वस्तु पूर्व दिशा कि ओर $30$ मी/से के वेग से जा रही है | $10$ सेकंड के बाद वह $40$ मी /से के वेग से उत्तर कि ओर गति करती है |वस्तु का औसत त्वरण है
किसी प्रक्षेप्य की ऊँचाई $y$ एवं क्षैतिज दूरी $x$, किसी ग्रह पर जहाँ वायु नही है, $y = 8t - 5{t^2}$ मीटर एवं $x = 6t$ मीटर द्वारा दी जाती हैं, जहाँ $t$ समय है। क्षैतिज से प्रक्षेपण कोण का मान होगा
एक $NCC$ की परेड $9\,km / h$ की एकसमान चाल से किसी आम के पेड के नीचे से गुजर रही है, जिस पर एक बंदर $19.6\,m$ की ऊँचाई पर बैठा है। किसी क्षण विशेष पर, बंदर एक आम गिराता है। यह कैडेट (छात्र) उस आम को प्राप्त करेगा जिसकी दूरी गिराने के समय पर पेड से $..........\,m$ निम्न के बराबर है :(दिया है, $g =9.8\,m / s ^2$ )
एक वस्तु मूलबिन्दु से विरामावस्था में $x-$अक्ष की दिशा में $6$ मी/से$^2$ के त्वरण और $y-$अक्ष की दिशा में $8$ मी/से$^2$ के त्वरण के साथ चलती है, $4$ सेकण्ड पश्चात मूलबिन्दु से इसकी दूरी होगी