- Home
- Standard 11
- Physics
एक पैदल यात्री किसी खड़ी चट्टान के कोने पर ख़ड़ा है । चट्टन जमीन से $490\, m$ ऊंची है । वह एक पत्थर को क्षितिज दिशा में $15\, ms ^{-1}$ की आरंभिक चाल से फेंकता है । वायु के प्रतिरोध को नगण्य मानते हुए यह ज्ञात कीजिए कि पत्थर को जमीन तक पहुँचने में कितना समय लगा तथा जमीन से टकराते समय उसकी चाल कितनी थी ? $\left(g=9.8\, m s ^{2}\right) \mid$
$20\;s\;and\;98\;m/s$
$10\;s\;and\;15\;m/s$
$20\;s\;and\;49\;m/s$
$10\;s\;and\;99\;m/s$
Solution
Answer we choose the origin of the $x$ – and $y$ axis at the edge of the cliff and $t=0$ s at the instant the stone is thrown. Choose the positive direction of $x$ -axis to be along the initial velocity and the positive direction of $y$ -axis to be the vertically upward direction. The $x-,$ and $y$ components of the motion can be treated independently. The equations of motion are:
$x(t) =x_{o}+v_{\alpha x} t$
$y(t) =y_{o}+v_{o y} t+(1 / 2) a_{y} t^{2}$
Here, $x_{0} =y_{0}=0, v_{o y}=0, a_{y}=-g=-9.8 m s ^{-2}$
$v_{ox }=15 m s ^{-1}$
The stone hits the ground when $y(t)=-490 m$
$-490 m =-(1 / 2)(9.8) t^{2}$
This gives $t=10 s$ The velocity components are $v_{x}=v_{a x}$ and $v_{y}=v_{o y}-g t$
so that when the stone hits the ground:
$v_{o x}=15 m s ^{-1}$
$v_{o y}=0-9.8 \times 10=-98 m s ^{-1}$
Therefore, the speed of the stone is
$\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{15^{2}+98^{2}}=99 m s ^{-1}$