If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express mass, length and time in terms of dimensions of these quantities.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that, dimensions of $(h)=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$ (From $\left.\mathrm{E}=h f\right]$ Dimensions of $(c)=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right] \quad(c$ is velocity $)$

Dimensions of gravitational constant

$(\mathrm{G})=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right] \quad\left(\text { From } \mathrm{F}=\frac{\mathrm{G} m_{1} m_{2}}{r^{2}}\right)$

$(i)$ Let $\mathrm{m} \propto c^{a} h^{b} \mathrm{G}^{c}$

$\Rightarrow \mathrm{m}=k c^{a} h^{b} \mathrm{G}^{c}$

where, $k$ is a dimensionless constant of proportionality. Substituting dimensions of each term in Eq.$ (i)$, we get

$\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right] =\left[\mathrm{LT}^{-1}\right]^{x} \times\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{y}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{z}$

$=\left[\mathrm{M}^{b-c} \mathrm{~L}^{a+2 b+3 c} \mathrm{~T}^{-a-b-2 c}\right]$

Comparing powers of same terms on both sides, we get

$b-c=1\ldots \text { (ii) }$

$a+2 b+3 c=0\ldots\text { (iii) }$

$-a-b-2 c=0\ldots\text { (iv) }$

$\ldots \text { (ii) }$

$\ldots \text { (iii) }$

Adding Eqs. $(ii)$, $(iii)$ and $(iv)$, we get

$2 b=1 \Rightarrow b=\frac{1}{2}$

Substituting value of $\mathrm{b}$ in eq. $(ii)$, we get

$c=-\frac{1}{2}$

From eq. $(iv)$,

$a=-b-2 c$

Substituting values of $b$ and $c$, we get

$a=-\frac{1}{2}-2\left(-\frac{1}{2}\right)=\frac{1}{2}$

Similar Questions

A system has basic dimensions as density $[D]$, velocity $[V]$ and area $[A]$. The dimensional representation of force in this system is 

The dimensions $\left[ MLT ^{-2} A ^{-2}\right]$ belong to the :

  • [NEET 2022]

Dimensional formula for angular momentum is

  • [AIPMT 1988]

The dimensions of ${e^2}/4\pi {\varepsilon _0}hc$, where $e,\,{\varepsilon _0},\,h$ and $c$ are electronic charge, electric permittivity, Planck’s constant and velocity of light in vacuum respectively

Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)

$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$

  • [IIT 2015]