If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express mass, length and time in terms of dimensions of these quantities.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that, dimensions of $(h)=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$ (From $\left.\mathrm{E}=h f\right]$ Dimensions of $(c)=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right] \quad(c$ is velocity $)$

Dimensions of gravitational constant

$(\mathrm{G})=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right] \quad\left(\text { From } \mathrm{F}=\frac{\mathrm{G} m_{1} m_{2}}{r^{2}}\right)$

$(i)$ Let $\mathrm{m} \propto c^{a} h^{b} \mathrm{G}^{c}$

$\Rightarrow \mathrm{m}=k c^{a} h^{b} \mathrm{G}^{c}$

where, $k$ is a dimensionless constant of proportionality. Substituting dimensions of each term in Eq.$ (i)$, we get

$\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right] =\left[\mathrm{LT}^{-1}\right]^{x} \times\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{y}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{z}$

$=\left[\mathrm{M}^{b-c} \mathrm{~L}^{a+2 b+3 c} \mathrm{~T}^{-a-b-2 c}\right]$

Comparing powers of same terms on both sides, we get

$b-c=1\ldots \text { (ii) }$

$a+2 b+3 c=0\ldots\text { (iii) }$

$-a-b-2 c=0\ldots\text { (iv) }$

$\ldots \text { (ii) }$

$\ldots \text { (iii) }$

Adding Eqs. $(ii)$, $(iii)$ and $(iv)$, we get

$2 b=1 \Rightarrow b=\frac{1}{2}$

Substituting value of $\mathrm{b}$ in eq. $(ii)$, we get

$c=-\frac{1}{2}$

From eq. $(iv)$,

$a=-b-2 c$

Substituting values of $b$ and $c$, we get

$a=-\frac{1}{2}-2\left(-\frac{1}{2}\right)=\frac{1}{2}$

Similar Questions

If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then

The quantities $A$ and $B$ are related by the relation, $m = A/B$, where $m$ is the linear density and $A$ is the force. The dimensions of $B$ are of

A force is represented by $\mathrm{F}=a \mathrm{x}^2+\mathrm{bt}^{1 / 2}$. Where $\mathrm{x}=$ distance and $\mathrm{t}=$ time. The dimensions of $\mathrm{b}^2 / \mathrm{a}$ are :

  • [JEE MAIN 2024]

Obtain the relation between the units of some physical quantity in two different systems of units. Obtain the relation between the $MKS$ and $CGS$ unit of work.

If pressure $P$, velocity $V$ and time $T$ are taken as fundamental physical quantities, the dimensional formula of force is