If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express mass, length and time in terms of dimensions of these quantities.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that, dimensions of $(h)=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$ (From $\left.\mathrm{E}=h f\right]$ Dimensions of $(c)=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right] \quad(c$ is velocity $)$

Dimensions of gravitational constant

$(\mathrm{G})=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right] \quad\left(\text { From } \mathrm{F}=\frac{\mathrm{G} m_{1} m_{2}}{r^{2}}\right)$

$(i)$ Let $\mathrm{m} \propto c^{a} h^{b} \mathrm{G}^{c}$

$\Rightarrow \mathrm{m}=k c^{a} h^{b} \mathrm{G}^{c}$

where, $k$ is a dimensionless constant of proportionality. Substituting dimensions of each term in Eq.$ (i)$, we get

$\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right] =\left[\mathrm{LT}^{-1}\right]^{x} \times\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{y}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{z}$

$=\left[\mathrm{M}^{b-c} \mathrm{~L}^{a+2 b+3 c} \mathrm{~T}^{-a-b-2 c}\right]$

Comparing powers of same terms on both sides, we get

$b-c=1\ldots \text { (ii) }$

$a+2 b+3 c=0\ldots\text { (iii) }$

$-a-b-2 c=0\ldots\text { (iv) }$

$\ldots \text { (ii) }$

$\ldots \text { (iii) }$

Adding Eqs. $(ii)$, $(iii)$ and $(iv)$, we get

$2 b=1 \Rightarrow b=\frac{1}{2}$

Substituting value of $\mathrm{b}$ in eq. $(ii)$, we get

$c=-\frac{1}{2}$

From eq. $(iv)$,

$a=-b-2 c$

Substituting values of $b$ and $c$, we get

$a=-\frac{1}{2}-2\left(-\frac{1}{2}\right)=\frac{1}{2}$

Similar Questions

A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,

  • [KVPY 2017]

Match List$-I$ with List$-II$.

List$-I$ List$-II$
$(A)$ Angular momentum $(I)$ $\left[ ML ^2 T ^{-2}\right]$
$(B)$ Torque $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$
$(C)$ Stress $(III)$ $\left[ ML ^2 T ^{-1}\right]$
$(D)$ Pressure gradient $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]

A beaker contains a fluid of density $\rho \, kg / m^3$, specific heat $S\, J / kg\,^oC$ and viscosity $\eta $. The beaker is filled upto height $h$. To estimate the rate of heat transfer per unit area $(Q / A)$ by convection when beaker is put on a hot plate, a student proposes that it should depend on $\eta \,,\,\left( {\frac{{S\Delta \theta }}{h}} \right)$ and $\left( {\frac{1}{{\rho g}}} \right)$ when $\Delta \theta $ (in $^oC$) is the difference in the temperature between the bottom and top of the fluid. In that situation the correct option for $(Q / A)$ is

  • [JEE MAIN 2015]

A neutron star with magnetic moment of magnitude $m$ is spinning with angular velocity $\omega$ about its magnetic axis. The electromagnetic power $P$ radiated by it is given by $\mu_{0}^{x} m^{y} \omega^{z} c^{u}$, where $\mu_{0}$ and $c$ are the permeability and speed of light in free space, respectively. Then,

  • [KVPY 2017]

The velocity $v$ (in $cm/\sec $) of a particle is given in terms of time $t$ (in sec) by the relation $v = at + \frac{b}{{t + c}}$ ; the dimensions of $a,\,b$ and $c$ are

  • [AIPMT 2006]