In a $G.P.,$ the $3^{rd}$ term is $24$ and the $6^{\text {th }}$ term is $192 .$ Find the $10^{\text {th }}$ term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $a_{3}=a r^{2}=24$      ........$(1)$

and   $a_{6}=a r^{5}=192$          ...........$(2)$

Dividing $(2)$ by $(1),$ we get $r=2 .$ Substituting $r=2$ in $(1),$ we get $a=6$

Hence $\quad a_{10}=6(2)^{9}=3072$

Similar Questions

If $a,\;b,\;c$ are ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ terms of a $G.P.$, then ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ is equal to

If the sum of the series $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ is a finite number, then

Which term of the following sequences:

$\sqrt{3}, 3,3 \sqrt{3}, \ldots$ is $729 ?$

Let the positive numbers $a _1, a _2, a _3, a _4$ and $a _5$ be in a G.P. Let their mean and variance be $\frac{31}{10}$ and $\frac{ m }{ n }$ respectively, where $m$ and $n$ are co-prime. If the mean of their reciprocals is $\frac{31}{40}$ and $a_3+a_4+a_5=14$, then $m + n$ is equal to $.........$.

  • [JEE MAIN 2023]

A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs $50$ paise to mail one letter. Find the amount spent on the postage when $8^{\text {th }}$ set of letter is mailed.