यदि ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$,जहाँ $a,b,c$ अशून्य संख्यायें हैं, तब $a,b,c$ होंगे
यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है
यदि $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^9}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$ है, जहाँ $m$ एक विषम संख्या है, तो $m . n$ बराबर है $...............$
निम्नलिखित श्रेणियों के $n$ पदों का योग ज्ञात कीजिए।
$5+55+555+\ldots$
एक $GP$ का चौथा पद $500$ है तथा इसका सार्व अनुपात $\frac{1}{\mathrm{~m}}, \mathrm{~m} \in \mathrm{N}$ है। माना इस $GP$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_6>\mathrm{S}_5+1$ तथा $\mathrm{S}_7<\mathrm{S}_6+\frac{1}{2}$ है, तो $\mathrm{m}$ के संभव मानों की संख्या है______________.