In a certain region of space, variation of potential with distance from origin as we move along $x$-axis is given by $V=8 x^2+2$, where $x$ is the $x$-coordinate of a point in space. The magnitude of electric field at a point $(-4,0)$ is .......... $V / m$

  • A

    $-16$

  • B

    $16$

  • C

    $-64$

  • D

    $64$

Similar Questions

The figure gives the electric potential $V$ as a function of distance through five regions on $x$-axis. Which of the following is true for the electric field $E$ in these regions

A cathode ray tube contains a pair of parallel metal plates $1.0\, cm$ apart and $3.0\, cm$ long. A narrow horizontal beam of electron with a velocity $3 \times 10^7\, m/s$ passed down the tube midway between the plates. When a potential difference of $550\, V$ is maintained across the plates, it is found that the electron beam is so deflected that it just strikes the end of one of the plates. Then the specific charge of the electron in $C/kg$ is

Electric potential is given by

$V = 6x - 8x{y^2} - 8y + 6yz - 4{z^2}$

Then electric force acting on $2\,C$ point charge placed on origin will be......$N$

An electron enters between two horizontal plates separated by $2\,mm$ and having a potential difference of $1000\,V$. The force on electron is

A charge of $5\,C$ experiences a force of $5000\,N$ when it is kept in a uniform electric field. .........$V$ is the potential difference between two points separated by a distance of $1\,cm$