4.Moving Charges and Magnetism
medium

એક ઓરડામાં, $6.5 \;G \left(1 \;G =10^{-4} \;T \right)$ જેટલું નિયમિત ચુંબકીય ક્ષેત્ર રાખેલું છે. આ ક્ષેત્રમાં લંબ રૂપે એક ઇલેક્ટ્રૉન $4.8 \times 10^{6} \;m s ^{-1}$ ઝડપે છોડવામાં આવે છે. ઈલેક્ટ્રૉનનો માર્ગ વર્તુળાકાર કેમ હશે તે સમજાવો. વર્તુળાકાર કક્ષાની ત્રિજ્યા શોધો.

$\left(e=1.5 \times 10^{-19} \;C , m_{e}=9.1 \times 10^{-31}\; kg \right)$

Option A
Option B
Option C
Option D

Solution

Magnetic field strength, $B=6.5 \,\,G=6.5 \times 10^{-4} \,T$

Speed of the electron, $V=4.8 \times 10^{6}\, m / s$

Charge on the electron, $e=1.6 \times 10^{-19} \,C$

Mass of the electron, $m_{e}=9.1 \times 10^{-31} \,kg$

Angle between the shot electron and magnetic field, $\theta=90^{\circ}$

Magnetic force exerted on the electron in the magnetic field is given as:

$F=e v B \sin \theta$

This force provides centripetal force to the moving electron. Hence, the electron starts moving

in a circular path of radius $r$ Hence, centripetal force exerted on the electron, $F_{e}=\frac{m v^{2}}{r}$

In equilibrium, the centripetal force exerted on the electron is equal to the magnetic force i.e., $F_{c}=F$

$\frac{m v^{2}}{r}=e v B \sin \theta$

$r=\frac{m v}{B e \sin \theta}$

$=\frac{9.1 \times 10^{-31} \times 4.8 \times 10^{6}}{6.5 \times 10^{-4} \times 1.6 \times 10^{-19} \times \sin 90^{\circ}}$

$=4.2 \times 10^{-2} \,m =4.2 \,cm$

Hence, the radius of the circular orbit of the electron is $4.2\, cm$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.